What is Artificial Intelligence? Basic Questions

John McCarthy

Q. What is artificial intelligence?

What is Artificial Intelligence? Basic Questions

A. It is the science and engineering of making intelligent machines, especially intelligent computer programs. It is related to the similar task of using computers understand human intelligence, but AI does not have to confine itself to methods that are biologically observable.

Q. Yes, but what is intelligence?

A. Intelligence is the computational part of the ability to achieve goals in the world. Varying kinds and degrees of intelligence occur in people, many animals and some machines.

Q. Isn’t there a solid definition of intelligence that doesn’t depend on relating it to human intelligence?

A. Not yet. The problem is that we cannot yet characterize in general what kinds of computational procedures we want to call intelligent. We understand some of the mechanisms of intelligence and not others.

Q. Is intelligence a single thing so that one can ask a yes or no question Is this machine intelligent or not?

A. No. Intelligence involves mechanisms, and AI research has discovered how to make computers carry out some of them and not others. If doing a task requires only mechanisms that are well understood today, computer programs can give very impressive performances on these tasks. Such programs should be considered some- what intelligent.

Q. Isn’t AI about simulating human intelligence?

A. Sometimes but not always or even usually. On the one hand, we can learn something about how to make machines solve problems by observing other people or just by observing our own methods. On the other hand, most work in AI involves studying the problems the world presents to intelligence rather than studying people or animals. AI researchers are free to use methods that are not observed in people or that involve much more computing than people can do.

Q. What about IQ? Do computer programs have IQs?

What is Artificial Intelligence? Basic Questions

A. No. IQ is based on the rates at which intelligence develops in children. It is the ratio of the age at which a child normally makes a certain score to the child’s age. The scale is extended to adults in a suitable way. IQ correlates well with various measures of success or failure in life, but making computers that can score high on IQ tests would be weakly correlated with their usefulness. For example, the ability of a child to repeat back a long sequence of digits correlates well with other intellectual abilities, perhaps because it measures how much information the child can compute with at once. However, digit span is trivial for even extremely limited computers. However, some of the problems on IQ tests are useful challenges for AI.

Q. What about other comparisons between human and computer intelligence?

What is Artificial Intelligence? Basic Questions

Arthur R. Jensen [Jen98], a leading researcher in human intelligence, suggests as a heuristic hypothesis that all normal humans have the same intellectual mechanisms and that differences in intelligence are related to quantitative biochemical and physiological conditions. I see them as speed, short term memory, and the ability to form accurate and retrievable long term memories. Whether or not Jensen is right about human intel- ligence, the situation in AI today is the reverse. Computer programs have plenty of speed and memory but their abilities correspond to the intellectual mechanisms that program designers understand well enough to put in programs. Some abilities that children normally don’t develop till they are teenagers may be in, and some abilities possessed by two year olds are still out. The matter is further complicated by the fact that the cognitive sciences still have not succeeded in determining exactly what the human abilities are. Very likely the organization of the intellectual mechanisms for AI can usefully be different from that in people. Whenever people do better than computers on some task or computers use a lot of computation to do as well as people, this demonstrates that the program designers lack understanding of the intellectual mechanisms required to do the task efficiently.